Source code for foxai.explainer.computer_vision.algorithm.gradcam

"""File with GradCAM algorithm explainer classes.

Based on https://github.com/pytorch/captum/blob/master/captum/attr/_core/guided_grad_cam.py
and https://github.com/pytorch/captum/blob/master/captum/attr/_core/layer/grad_cam.py.
"""

from abc import ABC, abstractmethod
from typing import Any, Dict, List, Optional, Union

import torch
import torch.nn.functional as F
from captum._utils.typing import TargetType
from captum.attr import GuidedGradCam

from foxai.array_utils import validate_result
from foxai.explainer.base_explainer import Explainer
from foxai.explainer.computer_vision.model_utils import (
    get_last_conv_model_layer,
    modify_modules,
)
from foxai.explainer.computer_vision.object_detection.base_object_detector import (
    BaseObjectDetector,
)
from foxai.explainer.computer_vision.object_detection.types import ObjectDetectionOutput


[docs]class LayerBaseGradCAM(ABC): """Layer GradCAM for object detection task.""" def __init__( self, target_layer: torch.nn.Module, ): self._gradients: Dict[str, torch.Tensor] = {} self._activations: Dict[str, torch.Tensor] = {} self.target_layer = target_layer def backward_hook( module, # pylint: disable = (unused-argument) grad_input, # pylint: disable = (unused-argument) grad_output, ): self._gradients["value"] = grad_output[0] def forward_hook( module, # pylint: disable = (unused-argument) input, # pylint: disable = (unused-argument,redefined-builtin) output, ): self._activations["value"] = output self.target_layer.register_forward_hook(forward_hook) self.target_layer.register_backward_hook(backward_hook) @property def activations(self) -> torch.Tensor: return self._activations["value"] @property def gradients(self) -> torch.Tensor: return self._gradients["value"]
[docs] @abstractmethod def forward( self, input_img: torch.Tensor, ) -> Union[torch.Tensor, ObjectDetectionOutput]: """Forward pass of GradCAM aglorithm. Args: input_img: Input image with shape of (B, C, H, W). Returns: ObjectDetectionOutput object for object detection and tensor with saliency map for classification. """
[docs] def get_saliency_map( self, height: int, width: int, gradients: torch.Tensor, activations: torch.Tensor, ) -> torch.Tensor: """Generate saliency map. Args: height: Original image height. width: Original image width. gradients: Layer gradients. activations: Layer activations. Returns: Saliency map. """ b, k, _, _ = gradients.size() alpha = gradients.view(b, k, -1).mean(2) weights = alpha.view(b, k, 1, 1) saliency_map = (weights * activations).sum(1, keepdim=True) saliency_map = F.relu(saliency_map) saliency_map = F.upsample( saliency_map, size=(height, width), mode="bilinear", align_corners=False ) saliency_map_min, saliency_map_max = saliency_map.min(), saliency_map.max() saliency_map = ( (saliency_map - saliency_map_min) .div(saliency_map_max - saliency_map_min) .data ) return saliency_map
def __call__( self, input_img: torch.Tensor, ) -> Union[torch.Tensor, ObjectDetectionOutput]: return self.forward(input_img)
[docs]class LayerGradCAMObjectDetection(LayerBaseGradCAM): """Layer GradCAM for object detection task.""" def __init__( self, model: torch.nn.Module, target_layer: torch.nn.Module, ): super().__init__(target_layer=target_layer) self.model = model
[docs] def forward( self, input_img: torch.Tensor, ) -> torch.Tensor: """Forward pass of GradCAM aglorithm. Args: input_img: Input image with shape of (B, C, H, W). Returns: Tensor with saliency map. """ saliency_maps: List[torch.Tensor] = [] _, _, height, width = input_img.size() result_list = self.model.forward(input_img) for result in result_list: score = result.max() # clear gradients self.model.zero_grad() # calculate gradients score.backward(retain_graph=True) saliency_maps.append( self.get_saliency_map( height=height, width=width, gradients=self.gradients, activations=self.activations, ) ) return torch.cat(saliency_maps)
[docs]class BaseGradCAMCVExplainer(Explainer): """Base GradCAM algorithm explainer."""
[docs] @abstractmethod def create_explainer( self, model: torch.nn.Module, layer: torch.nn.Module, **kwargs ) -> Union[GuidedGradCam, LayerBaseGradCAM]: """Create explainer object. Args: model: The forward function of the model or any modification of it. layer: Layer for which attributions are computed. Output size of attribute matches this layer's input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. Returns: Explainer object. """
[docs] @abstractmethod def calculate_features( self, model: torch.nn.Module, input_data: torch.Tensor, pred_label_idx: TargetType = None, additional_forward_args: Any = None, attribute_to_layer_input: bool = False, **kwargs, ) -> torch.Tensor: """Generate features image with GradCAM algorithm explainer. Args: model: The forward function of the model or any modification of it. input_data: Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. pred_label_idx: Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples - a list of integers or a 1D tensor, with length matching the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example. For outputs with > 2 dimensions, targets can be either: - A single tuple, which contains #output_dims - 1 elements. This target index is applied to all examples. - A list of tuples with length equal to the number of examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the target for the corresponding example. Default: None additional_forward_args: If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None attribute_to_layer_input: Indicates whether to compute the attribution with respect to the layer input or output in `LayerGradCam`. If `attribute_to_layer_input` is set to True then the attributions will be computed with respect to layer inputs, otherwise it will be computed with respect to layer outputs. Note that currently it is assumed that either the input or the output of internal layer, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False Returns: Element-wise product of (upsampled) GradCAM and/or Guided Backprop attributions. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Attributions will be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If the GradCAM attributions cannot be upsampled to the shape of a given input tensor, None is returned in the corresponding index position. """
[docs]class GuidedGradCAMCVExplainer(BaseGradCAMCVExplainer): """GuidedGradCAM algorithm explainer."""
[docs] def create_explainer( self, model: torch.nn.Module, layer: torch.nn.Module, **kwargs, ) -> Union[GuidedGradCam, LayerBaseGradCAM]: """Create explainer object. Args: model: The forward function of the model or any modification of it. layer: Layer for which attributions are computed. Output size of attribute matches this layer's input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. Returns: Explainer object. """ model = modify_modules(model) return GuidedGradCam(model=model, layer=layer)
[docs] def calculate_features( self, model: torch.nn.Module, input_data: torch.Tensor, pred_label_idx: TargetType = None, additional_forward_args: Any = None, attribute_to_layer_input: bool = False, interpolate_mode: str = "nearest", **kwargs, ) -> torch.Tensor: """Generate model's attributes with GradCAM algorithm explainer. Args: model: The forward function of the model or any modification of it. input_data: Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. pred_label_idx: Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples - a list of integers or a 1D tensor, with length matching the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example. For outputs with > 2 dimensions, targets can be either: - A single tuple, which contains #output_dims - 1 elements. This target index is applied to all examples. - A list of tuples with length equal to the number of examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the target for the corresponding example. Default: None additional_forward_args: If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None interpolate_mode: Method for interpolation, which must be a valid input interpolation mode for torch.nn.functional. These methods are "nearest", "area", "linear" (3D-only), "bilinear" (4D-only), "bicubic" (4D-only), "trilinear" (5D-only) based on the number of dimensions of the chosen layer output (which must also match the number of dimensions for the input tensor). Note that the original GradCAM paper uses "bilinear" interpolation, but we default to "nearest" for applicability to any of 3D, 4D or 5D tensors. Default: "nearest" attribute_to_layer_input: Indicates whether to compute the attribution with respect to the layer input or output in `LayerGradCam`. If `attribute_to_layer_input` is set to True then the attributions will be computed with respect to layer inputs, otherwise it will be computed with respect to layer outputs. Note that currently it is assumed that either the input or the output of internal layer, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False Returns: Element-wise product of (upsampled) GradCAM and/or Guided Backprop attributions. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Attributions will be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If the GradCAM attributions cannot be upsampled to the shape of a given input tensor, None is returned in the corresponding index position. Raises: ValueError: if model does not contain conv layers. RuntimeError: if attributions has shape (0) """ layer: Optional[torch.nn.Module] = kwargs.get("layer", None) if layer is None: layer = get_last_conv_model_layer(model=model) guided_cam = self.create_explainer(model=model, layer=layer) if isinstance(guided_cam, GuidedGradCam): attributions = guided_cam.attribute( input_data, target=pred_label_idx, additional_forward_args=additional_forward_args, interpolate_mode=interpolate_mode, attribute_to_layer_input=attribute_to_layer_input, ) validate_result(attributions=attributions) return attributions
[docs]class LayerGradCAMCVExplainer(BaseGradCAMCVExplainer): """Layer GradCAM algorithm explainer."""
[docs] def create_explainer( self, model: torch.nn.Module, layer: torch.nn.Module, **kwargs, ) -> Union[GuidedGradCam, LayerBaseGradCAM]: """Create explainer object. Args: model: The forward function of the model or any modification of it. layer: Layer for which attributions are computed. Output size of attribute matches this layer's input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. Returns: Explainer object. """ model = modify_modules(model) return LayerGradCAMObjectDetection(model=model, target_layer=layer)
[docs] def calculate_features( self, model: torch.nn.Module, input_data: torch.Tensor, pred_label_idx: TargetType = None, # pylint: disable = (unused-argument) additional_forward_args: Any = None, # pylint: disable = (unused-argument) attribute_to_layer_input: bool = False, # pylint: disable = (unused-argument) relu_attributions: bool = False, # pylint: disable = (unused-argument) **kwargs, ) -> torch.Tensor: """Generate features image with GradCAM algorithm explainer. Args: model: The forward function of the model or any modification of it. inputs_data: Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. If forward_func takes multiple tensors as input, a tuple of the input tensors should be provided. It is assumed that for all given input tensors, dimension 0 corresponds to the number of examples, and if multiple input tensors are provided, the examples must be aligned appropriately. pred_label_idx: Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples - a list of integers or a 1D tensor, with length matching the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example. For outputs with > 2 dimensions, targets can be either: - A single tuple, which contains #output_dims - 1 elements. This target index is applied to all examples. - A list of tuples with length equal to the number of examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the target for the corresponding example. Default: None additional_forward_args: If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None attribute_to_layer_input: Indicates whether to compute the attribution with respect to the layer input or output in `LayerGradCam`. If `attribute_to_layer_input` is set to True then the attributions will be computed with respect to layer inputs, otherwise it will be computed with respect to layer outputs. Note that currently it is assumed that either the input or the output of internal layer, depending on whether we attribute to the input or output, is a single tensor. Support for multiple tensors will be added later. Default: False relu_attributions: Indicates whether to apply a ReLU operation on the final attribution, returning only non-negative attributions. Setting this flag to True matches the original GradCAM algorithm, otherwise, by default, both positive and negative attributions are returned. Default: False Returns: Element-wise product of (upsampled) GradCAM and/or Guided Backprop attributions. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Attributions will be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If the GradCAM attributions cannot be upsampled to the shape of a given input tensor, None is returned in the corresponding index position. Raises: ValueError: if model does not contain conv layers. RuntimeError: if attributions has shape (0) """ layer: Optional[torch.nn.Module] = kwargs.get("layer", None) if layer is None: layer = get_last_conv_model_layer(model=model) gradcam = self.create_explainer(model=model, layer=layer) if isinstance(gradcam, LayerBaseGradCAM): attributions = gradcam(input_data) if not isinstance(attributions, torch.Tensor): raise RuntimeError( f"Saliency map is `{type(attributions)}`, but expected type is `torch.Tensor`." ) validate_result(attributions=attributions) return attributions
[docs]class LayerGradCAMObjectDetectionExplainer(LayerBaseGradCAM): """Layer GradCAM for object detection task. Code based on https://github.com/pooya-mohammadi/yolov5-gradcam. """ def __init__( self, model: BaseObjectDetector, target_layer: torch.nn.Module, ): super().__init__(target_layer=target_layer) self.model = model
[docs] def forward( self, input_img: torch.Tensor, ) -> ObjectDetectionOutput: """Forward pass of GradCAM aglorithm. Args: input_img: Input image with shape of (B, C, H, W). Returns: ObjectDetectionOutput object. """ saliency_maps: List[torch.Tensor] = [] _, _, height, width = input_img.size() predictions, logits = self.model.forward(input_img) for logit, cls in zip(logits[0], [p.class_number for p in predictions]): score = logit[cls] # clear gradients self.model.zero_grad() # calculate gradients score.backward(retain_graph=True) saliency_maps.append( self.get_saliency_map( height=height, width=width, gradients=self.gradients, activations=self.activations, ) ) return ObjectDetectionOutput( saliency_maps=saliency_maps, logits=logits, predictions=predictions, )