Source code for foxai.explainer.computer_vision.algorithm.input_x_gradient

"""File with Input X Gradient algorithm explainer classes.

Based on https://github.com/pytorch/captum/blob/master/captum/attr/_core/input_x_gradient.py
and https://github.com/pytorch/captum/blob/master/captum/attr/_core/layer/layer_gradient_x_activation.py.
"""

from abc import abstractmethod
from typing import Any, Optional, Union

import torch
from captum._utils.typing import TargetType
from captum.attr import InputXGradient, LayerGradientXActivation

from foxai.array_utils import validate_result
from foxai.explainer.base_explainer import Explainer
from foxai.explainer.computer_vision.model_utils import get_last_conv_model_layer


[docs]class BaseInputXGradientSHAPCVExplainer(Explainer): """Base Input X Gradient algorithm explainer."""
[docs] @abstractmethod def create_explainer( self, model: torch.nn.Module, **kwargs, ) -> Union[InputXGradient, LayerGradientXActivation]: """Create explainer object. Args: model: The forward function of the model or any modification of it. Returns: Explainer object. """
[docs] def calculate_features( self, model: torch.nn.Module, input_data: torch.Tensor, pred_label_idx: TargetType = None, additional_forward_args: Any = None, attribute_to_layer_input: bool = False, **kwargs, ) -> torch.Tensor: """Generate model's attributes with Input X Gradient algorithm explainer. Args: model: The forward function of the model or any modification of it. input_data: Input for which attributions are computed. If forward_func takes a single tensor as input, a single input tensor should be provided. pred_label_idx: Output indices for which gradients are computed (for classification cases, this is usually the target class). If the network returns a scalar value per example, no target index is necessary. For general 2D outputs, targets can be either: - a single integer or a tensor containing a single integer, which is applied to all input examples - a list of integers or a 1D tensor, with length matching the number of examples in inputs (dim 0). Each integer is applied as the target for the corresponding example. For outputs with > 2 dimensions, targets can be either: - A single tuple, which contains #output_dims - 1 elements. This target index is applied to all examples. - A list of tuples with length equal to the number of examples in inputs (dim 0), and each tuple containing #output_dims - 1 elements. Each tuple is applied as the target for the corresponding example. Default: None additional_forward_args: If the forward function requires additional arguments other than the inputs for which attributions should not be computed, this argument can be provided. It must be either a single additional argument of a Tensor or arbitrary (non-tuple) type or a tuple containing multiple additional arguments including tensors or any arbitrary python types. These arguments are provided to forward_func in order following the arguments in inputs. Note that attributions are not computed with respect to these arguments. Default: None attribute_to_layer_input: Indicates whether to compute the attribution with respect to the layer input or output. If `attribute_to_layer_input` is set to True then the attributions will be computed with respect to layer input, otherwise it will be computed with respect to layer output. Default: False Returns: The input x gradient with respect to each input feature or gradient and activation for each neuron in given layer output. Attributions will always be the same size as the provided inputs, with each value providing the attribution of the corresponding input index. If a single tensor is provided as inputs, a single tensor is returned. If a tuple is provided for inputs, a tuple of corresponding sized tensors is returned. Raises: RuntimeError: if attribution has shape (0). """ layer: Optional[torch.nn.Module] = kwargs.get("layer", None) input_x_gradient = self.create_explainer(model=model, layer=layer) if isinstance(input_x_gradient, LayerGradientXActivation): attributions = input_x_gradient.attribute( input_data, target=pred_label_idx, additional_forward_args=additional_forward_args, attribute_to_layer_input=attribute_to_layer_input, ) else: attributions = input_x_gradient.attribute( input_data, target=pred_label_idx, additional_forward_args=additional_forward_args, ) validate_result(attributions=attributions) return attributions
[docs]class InputXGradientCVExplainer(BaseInputXGradientSHAPCVExplainer): """Input X Gradient algorithm explainer."""
[docs] def create_explainer( self, model: torch.nn.Module, **kwargs, ) -> Union[InputXGradient, LayerGradientXActivation]: """Create explainer object. Args: model: The forward function of the model or any modification of it. Returns: Explainer object. """ return InputXGradient( forward_func=model, )
[docs]class LayerInputXGradientCVExplainer(BaseInputXGradientSHAPCVExplainer): """Layer Input X Gradient algorithm explainer."""
[docs] def create_explainer( self, model: torch.nn.Module, layer: Optional[torch.nn.Module] = None, multiply_by_inputs: bool = True, **kwargs, ) -> Union[InputXGradient, LayerGradientXActivation]: """Create explainer object. Uses parameter `layer` from `kwargs`. If not provided function will call `get_last_conv_model_layer` function to obtain last `torch.nn.Conv2d` layer from provided model. Args: model: The forward function of the model or any modification of it. layer: Layer for which attributions are computed. Output size of attribute matches this layer's input or output dimensions, depending on whether we attribute to the inputs or outputs of the layer, corresponding to attribution of each neuron in the input or output of this layer. Default: None multiply_by_inputs: Indicates whether to factor model inputs' multiplier in the final attribution scores. In the literature this is also known as local vs global attribution. If inputs' multiplier isn't factored in, then this type of attribution method is also called local attribution. If it is, then that type of attribution method is called global. More detailed can be found here: https://arxiv.org/abs/1711.06104 In case of layer gradient x activation, if `multiply_by_inputs` is set to True, final sensitivity scores are being multiplied by layer activations for inputs. Returns: Explainer object. Raises: ValueError: if model does not contain conv layers. """ if layer is None: layer = get_last_conv_model_layer(model=model) return LayerGradientXActivation( forward_func=model, layer=layer, multiply_by_inputs=multiply_by_inputs, )