foxai.explainer package
Subpackages
- foxai.explainer.computer_vision package
- Subpackages
- foxai.explainer.computer_vision.algorithm package
- Submodules
- foxai.explainer.computer_vision.algorithm.conductance module
- foxai.explainer.computer_vision.algorithm.deconv module
- foxai.explainer.computer_vision.algorithm.deeplift module
- foxai.explainer.computer_vision.algorithm.deeplift_shap module
- foxai.explainer.computer_vision.algorithm.gradcam module
- foxai.explainer.computer_vision.algorithm.gradient_shap module
- foxai.explainer.computer_vision.algorithm.guided_backprop module
- foxai.explainer.computer_vision.algorithm.input_x_gradient module
- foxai.explainer.computer_vision.algorithm.integrated_gradients module
- foxai.explainer.computer_vision.algorithm.lrp module
- foxai.explainer.computer_vision.algorithm.noise_tunnel module
- foxai.explainer.computer_vision.algorithm.occlusion module
- foxai.explainer.computer_vision.algorithm.saliency module
- Module contents
- foxai.explainer.computer_vision.object_detection package
- foxai.explainer.computer_vision.algorithm package
- Submodules
- foxai.explainer.computer_vision.model_utils module
- Module contents
- Subpackages
Submodules
foxai.explainer.base_explainer module
Abstract Explainer class.
- foxai.explainer.base_explainer.CVExplainerT
CVExplainer subclass type.
alias of TypeVar(‘CVExplainerT’, bound=
Explainer
)
- class foxai.explainer.base_explainer.Explainer[source]
Bases:
ABC
Abstract explainer class.
- property algorithm_name: str
Get algorithm name.
- Returns:
Name of algorithm.
- Return type:
str
- abstract calculate_features(model: Module, input_data: Tensor, pred_label_idx: Union[None, int, Tuple[int, ...], Tensor, List[Tuple[int, ...]], List[int]] = None, **kwargs) Tensor [source]
Calculate features of given explainer.
- Parameters:
model – Neural network model You want to explain.
input_data – Input image.
pred_label_idx – Predicted label.
- Returns:
Tensor of attributes.